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Abstract In this paper it is introduced and studied an alternative theory of gravitation in
flat Minkowski space. Using an antisymmetric tensor φ, which is analogous to the tensor
of electromagnetic field, a non-linear connection is introduced. It is very convenient for
studying the perihelion/periastron shift, deflection of the light rays near the Sun and the
frame dragging together with geodetic precession i.e. effects where angles are involved.
Although the corresponding results are obtained in rather different way, they are the same as
in the General Relativity. The results about the barycenter of two bodies are also the same
as in the General Relativity. Comparing the derived equations of motion for the n-body
problem with the Einstein-Infeld-Hoffmann equations, it is found that they differ from the
EIH equations by Lorentz invariant terms of order c−2.

Keywords Non-linear connection · Equations of motion · Lagrangian · n-body problem ·
Minkowski space

1 Introduction

In this paper, the gravitational phenomena are studied in flat Minkowski space and this
approach is a small step ahead of the Special Relativity. In the literature there are some
attempts the results of the General Relativity to be obtained in flat space-time and a study
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of such attempts and a proposed theory is given in [1]. Another example is the teleparallel
approach [2], where the metric is hidden in the frame. Teleparallel gravity is reduced to
General relativity and therefore calculations for the gravitational tests are not necessary.
However, the study in this paper is broader and we also make the calculations (up to c−2) to
investigate the agreement with the basic gravitational tests.

For the equations of motion the position of the observer is also important, i.e. whether he
is away from the gravitational field, or inside the gravitational field. Indeed, the equations
depend only on the chosen coordinate system, but the parameters in the equations depend on
the position of the observer in its local coordinate frame. Such position dependent parame-
ters are for example the acceleration toward the gravitational bodies. So, we can distinguish
four cases:

1. The observer is far from gravitation and the coordinates are orthonormal;
2. The observer is inside the gravitational field and the coordinates are ordinary (curvilin-

ear);
3. The observer is inside the gravitational field and the coordinates are orthonormal;
4. The observer is far from gravitation and the coordinates are ordinary (curvilinear).

In this paper, we focus on the case 1. Specially, the theory will be covariant with respect
to the Lorentz transformations with constant elements, analogously to the Special Relativity,
because of the freedom of the choice of the inertial coordinate system far from gravitation,
where the observer is placed. Cases 2 and 3 are much more complicated and they will be con-
sidered in a forthcoming paper. The case 4 is a subject of the General Relativity (GR), more
precisely the Einstein-Infeld-Hoffmann equations, which will be supported in Sect. 7.5.

In Sect. 2 we present a nonlinear connection in the Minkowskian space. Such a research
offers a great convenience in calculations which have been used as advantage also in some
other approaches [3, 4], etc. It gives a very close relationship with the electrodynamics
(Sect. 2) which gives possibility for quantization of gravitation and unification with the other
interactions, since the other interactions are considered in flat space (see [5] for interesting
discussions on the topic).

Non-linear connections are widely used at present time. For example, non-linear con-
nections using Finsler geometry are studied in [6–8] and also in [9–13]. But although for
studying gravitation both nonlinear connection and research in flat space are not new [14],
in this paper we propose an approach obeying both characteristics.

We use ict convention (see pp. 51 in [15] about ct/ict conventions). So, we work with
the Euclidean metric diag(1,1,1,1) and upper and lower indices will not differ.

2 Introduction of a Non-linear Connection

Firstly, we explain why it is not convenient to use linear connection. Let us examine the
effect of a linear connection concerning the 4-velocities. The parallel transport of any vector
in the direction of a 4-vector of velocity (V1,V2,V3,V4) means that parallel transport is
made in each of the four directions (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1), these
are multiplied by V1, V2, V3, and V4 respectively and then all is added together. But, we
can not consider a 4-velocity as a translation, since that is not supported by the special-
relativistic addition. Rather, a 4-velocity should be regarded as a Lorentz transformation
with its incorporated hyperbolic properties in the 4-dimensional space. So, we will consider
a non-linear connection in a sense that the condition ∇aX+bY = a∇X + b∇Y is dismissed.
The construction will be made in three steps.
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2.1 Using an Analogy from Electromagnetism

Firstly, we will make a complete analogy with the electromagnetism, where instead of the
charge e we will consider mass M , and instead of the potential e

r
we will consider the

gravitational potential GM
r

, assuming that M has the same value in each inertial coordinate
system. Further we will introduce an antisymmetric tensor analogous to the tensor of elec-
tromagnetic field. We accept a priori that the velocity of the gravitational interaction is c,
which would enable us to find this tensor when the source of gravitation field is accelerated.

Let us consider the motion of a test body under the influence of a gravitational body with
mass M concentrated into a point with a time dependent 4-vector of velocity

(U1,U2,U3,U4) = 1
√

1 − u2/c2

(
ux

ic
,
uy

ic
,
uz

ic
,1

)
, (2.1)

where u = (ux, uy, uz) is the corresponding 3-vector of velocity. Assume that the 4-vector
of velocity of a test body with mass m is given by

(V1,V2,V3,V4) = 1
√

1 − v2/c2

(
vx

ic
,
vy

ic
,
vz

ic
,1

)
. (2.2)

We build an antisymmetric tensor field φij , in the following way. Firstly, we consider a
special case when the sources of gravitation move with constant velocities. It is sufficient
to define this tensor for a stationary body with point mass M . Then, using the Lorentz
transformations and the principle of superposition of the fields, the tensor is theoretically
well defined in this special case. In this case, at the point (x, y, z) φ is defined by

(φij ) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0 0 GM

r3c2 (x − x0)

0 0 0 GM

r3c2 (y − y0)

0 0 0 GM

r3c2 (z − z0)

− GM

r3c2 (x − x0) − GM

r3c2 (y − y0) − GM

r3c2 (z − z0) 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

, (2.3)

where (x0, y0, z0) is the position of the gravitational body.
The 3-vector c2(φ41, φ42, φ43) is the Newton acceleration toward the gravitational body,

which is analogous to the electric field E. The physical interpretation of the components φij

for 1 ≤ i, j ≤ 3 will be given by (2.17).
Notice that using this tensor in flat Minkowski space it is obtained a general formula for

frequency redshift/blueshift [16], which simultaneously explains the Doppler effect, gravi-
tational redshift and under one cosmological assumption it also explains the cosmological
redshift and the blueshift arising from the Pioneer anomaly. The gravitational redshift there
is a consequence of the attraction force near the gravitational bodies and we do not need
curved space any more.

Now let us consider arbitrary time variable vector u of the source of gravitation. Analo-
gously as obtaining Lienard-Wiechert potentials in electrodynamics, the components of the
tensor in case of gravitation can be obtained at each space-time point, using that the gravi-
tational interaction transmits with velocity c. So, we get the following analogous formulae
as in electrodynamics

c2(φ41, φ42, φ43) = − GM

(R − R·u
c

)3

(
R − u

c
R

)
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− GM

c2(R − R·u
c

)3
R ×

[(
R − u

c
R

)
× u̇

]
, (2.4a)

c

i
(φ32, φ13, φ21) = 1

R
R × (φ41, φ42, φ43). (2.4b)

Here u is the velocity of the gravitational body, R is the 3-vector from the gravitational body
to the considered point (x, y, z, ict) in the chosen coordinate system calculated at the space-
time point (x ′, y ′, z′, ict′) of the gravitational body, such that after time t − t ′ of transmission
of the interaction, it arrives at the considered point (x, y, z, ict). Thus, t ′ appears as a solution
of the equation

t = t ′ + R(t ′)
c

. (2.5)

In (2.4a) u̇ = ∂u/∂t ′ and R = |R|.
In the special case when u̇ = 0 (2.4a) reduces to

c2(φ41, φ42, φ43) = −GM

R3
R

1 − u2

c2

(1 − u2

c2 sin2 θ)3/2
, (2.6)

where θ is the angle between R and u, and R is the 3-vector from the gravitational body to
the considered point at time t . This special case can be deduced directly from (2.3) using
the Lorentz transformations.

In this paper we will work up to c−2 approximation. Since for the 2-body problem R
is collinear with u̇, the last term in (2.4a) can be neglected for c−2 approximation. Hence,
in this paper we can use the equality (2.6), except in Sect. 6, where the n-body problem is
considered.

A natural question appears about the analog of the 4-vector potential from the electro-
magnetism. It is treated in some previous papers [17, 18] and it is not necessary to consider
it in this paper.

We can resume, so far, that in case of gravitation we accepted some facts from the elec-
tromagnetism. But we must emphasize that there are two essential differences, which will
be considered in the Sects. 2.2 and 2.3. The gravity is associated with a spin-2 field rather
than the spin-1 field of the electromagnetism.

(i) While the charge e in electrodynamics is invariant scalar in all coordinate systems, the
gravitational mass M is not invariant. Since the inertial mass is not Lorentz invariant
according to the Special Relativity, it is naturally to expect that the gravitational mass
is not invariant in flat Minkowski space. Thus, the tensor φ must be modified, and this
will be made in Sect. 2.2.

(ii) The equations of motion can not simply copy the Lorentz formula from the electrody-
namics, because it gives a parallel transportation only of a single vector, the 4-vector of
velocity, but not of an arbitrary vector. Thus, in case of gravitation we must modify the
Lorentz force, and it will be made in Sect. 2.3. Moreover, while the Lorentz force acting
on the charged particles depends on the electromagnetic field at the considered point
and not on the velocity of the source of the electromagnetic field, in case of gravitation,
as we shall see, the motion depends on the source of gravitation very explicitly. This
dependence in GR is implicitly contained in the Einstein’s equations and it is explicitly
visible in the Einstein-Infeld-Hoffmann equations.
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2.2 Influence of the Masses to the Gravitational Force and Acceleration

A mass far from gravitation measured by an observer far from gravitation will be called
proper mass and will be denoted by m, M , m1, m2, . . . . An observer far from gravitation
observing a body with proper mass m that has fallen into a gravitational field with gravita-
tional potential GM

R
, will measure m

1+ GM

Rc2
for the mass of the body. It is convenient the scalar

μ = 1+ GM

Rc2 to call also (gravitational) potential. Assume that the test body has a small mass
m with respect to the gravitational body. Then this is in accordance with the preserving of
the energy in a gravitational field, such that considering also the kinetic energy, the mass

m

1+ GM

Rc2

1√
1− v2

c2

will be unchanged up to c−2 during the motion of the test body.

Let us consider two bodies with masses m1 and m2 on a distance R between their centers.
Then the mass m1 is observed to be m1

1+ Gm2
Rc2

under the influence of the other mass m2, and

the mass m2 is observed to be m2

1+ Gm1
Rc2

under the influence of the other mass m1. So, the

gravitational force which acts on the body with mass m1 and is caused by the body with
mass m2 is given by

f = m1

1 + Gm2
Rc2

∇ Gm2

R(1 + Gm1
Rc2 )

, (2.7)

while the acceleration of the body with mass m1 is assumed to be

a = 1

1 + Gm2
Rc2

∇ Gm2

R(1 + Gm1
Rc2 )

. (2.8)

The formulae (2.7) and (2.8) will be generalized below by (2.10) and (2.11). We must em-
phasize that these formulae are given with respect to an observer far from gravitation, as-
suming also that the observer does not move with respect to the gravitational bodies. Here,
the distance R is a function of 6 coordinates: 3 coordinates of the body with mass m1 and 3
coordinates of the body with mass m2, and the gradient is taken with respect to the coordi-
nates of the body with mass m1. It is easy to see that up to c−2 the acceleration (2.8) can be
written in the form

a = −R
R

Gm2

R2

(
1 − G(2m1 + m2)

Rc2

)
, (2.9)

where R is the vector from the body with mass m2 towards the body with mass m1.
In Sect. 6 we will consider the general equations for n-body problem. Then it will be

necessary to use a more general formula for the acceleration. If we consider the interaction
of two bodies, for example with masses m1 and m2, we must use that their masses in the
gravitational field are

m1

/[(
1 + Gm2

r12c2

)(
1 + Gm3

r13c2

)
· · ·

]
and m2

/[(
1 + Gm1

r21c2

)(
1 + Gm3

r23c2

)
· · ·

]

respectively, where rij is the distance between the bodies with masses mi and mj . Now,
analogously to (2.7), and (2.8) for the force/acceleration of the body with mass m1 caused
by the mass m2 we accept axiomatically that

f = m1

(1 + Gm2
r12c2 )(1 + Gm3

r13c2 ) · · ·∇
Gm2

r12(1 + Gm1
r12c2 )(1 + Gm3

r23c2 ) · · · , (2.10)
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a = 1

(1 + Gm2
r12c2 )(1 + Gm3

r13c2 ) · · ·∇
Gm2

r12(1 + Gm1
r12c2 )(1 + Gm3

r23c2 ) · · · . (2.11)

Analogously to (2.9), in this general case we obtain

a =
[(

1 + Gm2

r12c2

)(
1 + Gm1

r12c2

)2(
1 + Gm3

r13c2

)

×
(

1 + Gm3

r23c2

)(
1 + Gm4

r14c2

)(
1 + Gm4

r24c2

)
· · ·

]−1

∇ Gm2

r12
. (2.12)

Notice that according to the assumptions that the observer is far from gravitation and the
gravitational bodies do not move with respect to the observer, the acceleration from Sect. 2.1
is given by ∇ Gm2

r12
. Thus, for moving bodies with respect to the observer, up to c−2, the

components φ14, φ24, φ34, φ41, φ42, φ43 should be multiplied by the coefficient in front of
∇ Gm2

r12
in (2.12). Since the components wx,wy,wz are much smaller than ax, ay, az, we can

conclude that all the components of the tensor φ should be multiplied by the coefficient in
front of ∇ Gm2

r12
in (2.12). This coefficient in (2.12) is a scalar in the Minkowskian space up

to c−2, and hence the product, i.e. the modified tensor φ, will preserve its tensor character.
We agree that further on, φ will always mean this modified tensor.

We shall draw some conclusions. For example, if m1 is negligible small mass and m2 =
M is non-zero mass of a stationary body, then the acceleration of the body with mass m1 is

equal to a = − R
R

GM

R2

1+ GM

Rc2
. This acceleration can be written as

a = c2∇ ln

(
1 + GM

Rc2

)
. (2.13)

Now, it is clear that the potentials μ = 1 + GM

Rc2 and Cμ, where C is a constant, lead to the
same acceleration.

At the end of this subsection we emphasize the following remark about the preserving
the energy of a system of n-bodies with masses m1,m2, . . . ,mn. According to the accepted
change of the mass near gravitational bodies, the energy of the i-th body, including the
energy in rest mic

2 is equal to

mic
2

√
1 − v2

i

c2

∏

j �=i

(1 + Gmj

rij c2 )

.

Following the electrodynamics analogy, as the density of energy caused by charged particles
is given by E2+H 2

8π
, in case of gravitation we have that the density of energy is given by

a2+w2c2

8πG
, because cw corresponds to the magnetic field (see (2.17)). Since w ∼ c−2, this

energy density can be replaced by a2

8πG
. Hence the total energy is given by

n∑

i=1

mic
2

√
1 − v2

i

c2

∏
j �=i (1 + Gmj

rij c2 )

+ 1

8πG

∫
a2dV . (2.14)
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Using that 1
8πG

∫
a2dV = ∑

i,j,j �=i

Gmimj

2rij
+ const., we obtain that up to a constant summand

the total energy can be written in the form

n∑

i=1

mic
2

√
1 − v2

i

c2

− 1

8πG

∫
a2dV .

This formula is the same as in GR, and hence the conclusion in GR that the density of
energy is − a2

8πG
[19], instead of a2

8πG
. Although this energy

∫
a2

8πG
dV and also the kinetic

energy take part in determining the barycenter of the system of bodies, both energies do not
contribute to the acceleration of the other bodies. Only the mass mi/

∏
j �=i (1 + Gmj

rij c2 ) plays

role in the acceleration towards the i-th body. This is visible from (2.10) and (2.11). Also
notice that the barycenter of the bodies remains unchanged, compared with the GR. Namely,
analogously as obtaining the barycenter in the GR and in electrodynamics [19], in this case
one obtains again the same radius-vector

rb =
∑n

i=1 ri (mic
2 + 1

2miv
2
i − Gmi

2

∑
j �=i

mj

rij
)

∑n

i=1(mic2 + 1
2miv

2
i − Gmi

2

∑

j �=i

mj

rij
)

. (2.15)

2.3 Equations of Parallel Displacement

Notice that in a system of four orthonormal vectors Ai1, Ai2, Ai3 and Ai4, where Aiα is the
i-th coordinate of the α-th vector, using that Aiα is an orthogonal matrix, i.e. AAT = I , the
following tensor

dAiα

ds
Ajα, (2.16)

ds = ic

√
1 − v2

c2 dt is also skew-symmetric as φij is. The formula (2.16) is invariant under
the linear transformation Aiα → Biα = AiβRβα , where R is an orthogonal matrix with con-
stant elements. In the special case when Ui = Vi , we assume that the two tensors, φij and
the tensor in (2.16), are equal. Then the physical interpretation of φij can be obtained using
the tensor (2.16). Since (2.16) is invariant under the linear transformation A → AR, without
loss of generality, we may assume that Aij = δij at the considered point, and hence the com-
ponents of (2.16) are 3-vector of acceleration and 3-vector of angular velocity. We represent
φ in the following form

φ =

⎡

⎢⎢
⎣

0 −iωz/c iωy/c −ax/c
2

iωz/c 0 −iωx/c −ay/c
2

−iωy/c iωx/c 0 −az/c
2

ax/c
2 ay/c

2 az/c
2 0

⎤

⎥⎥
⎦ , (2.17)

where a = (ax, ay, az) is the 3-vector of acceleration and w = (wx,wy,wz) is the 3-vector
of angular velocity. Indeed we accept the following notations

ax = φ41c
2 = −φ14c

2, ay = φ42c
2 = −φ24c

2, az = φ43c
2 = −φ34c

2,

wx = icφ23 = −icφ32, wy = icφ31 = −icφ13, wz = icφ12 = −icφ21.
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In the special case when (Ui) = (0,0,0,1), from (2.3) it follows that w = (0,0,0). If (Ui) �=
(0,0,0,1), then w can be nonzero, analogously as for frame dragging.

Now, let us consider the general formula for the parallel transport of the considered frame
Aiα in direction of the 4-vector of velocity Vi . We introduce the tensor P = P (U,V ) given
by

Pij = δij − 1

1 + UsVs

(ViVj + ViUj + UiVj + UiUj ) + 2UjVi, (2.18)

and accept axiomatically the following relationship between the tensor φij and the tensor
given by (2.16)

dAiα

ds
Ajα = PriφrkPkj , (2.19)

or in matrix form dA
ds

AT = P T φP. Notice that both sides of (2.19) are skew-symmetric
matrices.

The tensor Pij is an orthogonal matrix. It can be verified by using the identities UiUi =
ViVi = 1. Moreover, it has the following property P (U,V ) = P (V,U)−1. Some other prop-
erties of this tensor are given in [20] and a justification for its appearance in (2.19) is given
in [21]. For example, it is shown that using the standard addition, one can not uniquely deter-
mine a 4-vector in the Minkowskian space-time which would represent a relative 4-velocity
of a point B with respect to a point A, assuming that B moves with 4-velocity V and A

moves with 4-velocity U . So, the tensor P (U,V ) provides a transition between velocities,
i.e. PijUj = Vj . The tensor P with some of its properties was independently found also by
other authors [22, 23].

In the special case (Ui) = (0,0,0,1), the tensor P (U,V ) is given by

P =

⎡

⎢⎢⎢⎢⎢
⎣

1 − 1
ν
V 2

1 − 1
ν
V1V2 − 1

ν
V1V3 V1

− 1
ν
V2V1 1 − 1

ν
V 2

2 − 1
ν
V2V3 V2

− 1
ν
V3V1 − 1

ν
V3V2 1 − 1

ν
V 2

3 V3

−V1 −V2 −V3 V4

⎤

⎥⎥⎥⎥⎥
⎦

, (2.20)

where V1,V2,V3,V4 are given by (2.2), ν = 1 + V4, and this represents just a Lorentz trans-
formation (as a boost, without space rotation). Multiplying (2.19) by Ajβ and sum for j we
get

dAiβ

ds
= PriφrkPkjAjβ, (2.21)

and hence for the parallel displacement of an arbitrary vector Ai we get

dAi

ds
= PriφrkPkjAj . (2.22)

Particularly, for Ai = Vi , we obtain the equations of motion

dVi

ds
= PriφrkPkjVj . (2.23)

The last equation (i = 4) of (2.23) is a consequence of the first three equations, because if
we multiply (2.23) by Vi and sum for i = 1,2,3,4 we obtain the identity 0 = 0. The same
is true for (2.22) also.
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Notice that the vectors Ui and Vi are tangent vectors of different curves, parameterized
for example via the time parameters. Thus in (2.23) and the previous formulae, the 4-vector
Ui should be taken at the point (x ′, y ′, z′, ict ′), where t and t ′ are related by (2.5), because
we must take into account the time which is needed for the gravitational interaction to reach
the test body. But, if we take the values of Ui at the same time t as the 4-vector Vi , then the
acceleration of the test body would be changed of order c−4, and so we will do that in this
paper.

In the special case when (Ui) = (0,0,0,1), the nonlinear connection given by (2.22) and
(2.23) is approximated [17] by a linear but not metric connection, using Christoffel symbols
�i

jk , such that �i
jk = −�

j

ik . The Christoffel symbols depend on the components of the tensor
φ and it is verified that the Einstein equations are satisfied up to c−2 for such a connection.

Two characteristics are essential for these equations of motion in flat space: They are
Lorentz invariant and they do not use any special coordinate system. But the inertial and
gravitational masses are different.

Let us consider the case of only one gravitational body in rest. Then the tensor φij and the
equations of motion are invariant under the transformation μ → Cμ, where C is a constant.
Thus the tensor φ and the equations of motion are invariant under the gauge transformation
lnμ → C + lnμ, which is analogous to the Newtonian gauge transformation V → V + C,
and analogous to the invariance of the equations of motion in metric theories with respect to
the transformation gij → C · gij .

3 Geodesics Applied to Planetary Orbits, Light Ray Trajectories and Gyroscope
Precession

Our coordinate origin will be chosen to be at the center of the Sun, U1 = U2 = U3 = 0 and
the mass of each planet is assumed to be negligible with respect to the mass of the Sun.

A straight calculation of the matrix S = P T φP , where φ is given by (2.17) and P is
given by (2.20), leads to

S41 = −S14 = i
ωz

c
V2 − i

ωy

c
V3 + ax

c2

(
V4 + (V1)

2

1 + V4

)
+ ay

c2

V1V2

1 + V4
+ az

c2

V1V3

1 + V4
,

S42 = −S24 = i
ωx

c
V3 − i

ωz

c
V1 + ax

c2

V1V2

1 + V4
+ ay

c2

(
V4 + (V2)

2

1 + V4

)
+ az

c2

V2V3

1 + V4
,

S43 = −S34 = i
ωy

c
V1 − i

ωx

c
V2 + ax

c2

V1V3

1 + V4
+ ay

c2

V2V3

1 + V4
+ az

c2

(
V4 + (V3)

2

1 + V4

)
,

S32 = −S23 = az

c2
V2 − ay

c2
V3 + i

ωx

c

(
V4 + (V1)

2

1 + V4

)
+ i

ωy

c

V1V2

1 + V4
+ i

ωz

c

V1V3

1 + V4
,

S13 = −S31 = ax

c2
V3 − az

c2
V1 + i

ωx

c

V1V2

1 + V4
+ i

ωy

c

(
V4 + (V2)

2

1 + V4

)
+ i

ωz

c

V2V3

1 + V4
,

S21 = −S12 = ay

c2
V1 − ax

c2
V2 + i

ωx

c

V1V3

1 + V4
+ i

ωy

c

V2V3

1 + V4
+ i

ωz

c

(
V4 + (V3)

2

1 + V4

)
,

S11 = S22 = S33 = S44 = 0.

(3.1)
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Now by using equalities (3.1), (2.23) become

dvx

dt
=

[
(2 − β−2)ax − vx

c2
(aivi) ·

(
2 + 1

β(β + 1)

)
+ 2(vywz − vzwy)

]
, (3.2a)

dvy

dt
=

[
(2 − β−2)ay − vy

c2
(aivi) ·

(
2 + 1

β(β + 1)

)
+ 2(vzwx − vxwz)

]
, (3.2b)

dvz

dt
=

[
(2 − β−2)az − vz

c2
(aivi) ·

(
2 + 1

β(β + 1)

)
+ 2(vxwy − vywx)

]
, (3.2c)

d

dt

1
√

1 − v2

c2

= 1

c2
(aivi), (3.2d)

where β = (1− v2

c2 )−1/2 and aivi = axvx +ayvy +azvz. Indeed, (3.2d) is a direct consequence
of (2.23) for i = 4, and then this equality multiplied by − vx

ic
, − vy

ic
, and − vz

ic
should be added

to (2.23) for i = 1,2,3, respectively in order to find dvx/ds, dvy/ds, and dvz/ds. It is easy
to verify that if U = (0,0,0,1), then (3.2d) does not depend on the matrix transformation
P applied to φ, i.e. (3.2d) remains unchanged if we take φ instead of P T φP in (2.23).

We will apply these equations in our special case. Using that μ = 1 + GM

rc2 , where M is
the mass of the Sun, from (2.3) and (2.13) we obtain

(φij ) =

⎡

⎢⎢⎢⎢⎢
⎣

0 0 0 GM

μr3c2 x

0 0 0 GM

μr3c2 y

0 0 0 GM

μr3c2 z

− GM

μr3c2 x − GM

μr3c2 y − GM

μr3c2 z 0

⎤

⎥⎥⎥⎥⎥
⎦

, (3.3)

and from the equations of motion (2.23), where the vector Vi is given by (2.2), can be found

the components d2x

dt2 = dvx

dt
, d2y

dt2 = dvy

dt
, and d2z

dt2 = dvz

dt
. We replace vz = 0, assuming that the

test body moves in the xy-plane, and thus, the equation for i = 3 will be omitted. In this
case, without any approximation, (3.2a), (3.2b), and (3.2d) reduce to

d2x

dt2
= GM

μr3

[
(β−2 − 2)x + vx

c2
(xvx + yvy)

(
2 + 1

β(β + 1)

)]
, (3.4a)

d2y

dt2
= GM

μr3

[
(β−2 − 2)y + vy

c2
(xvx + yvy)

(
2 + 1

β(β + 1)

)]
, (3.4b)

β − ln

(
1 + GM

rc2

)
= const., (3.4c)

where (3.4c) is a solution of the differential equation (3.2d). This equation can be written in
the following form

UiVi − ln

(
1 + GM

rc2

)
= const., (3.4d)

where Ui is the 4-vector of velocity of the Sun and Vi is the 4-vector of velocity of the
considered planet neglecting its mass. The scalars UiVi and the 3-dimensional distance r

determined in the system where the Sun rests, are invariant of the choice of the inertial
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coordinate system. Thus, (3.4d) is Lorentz invariant scalar equation. Indeed, the left side
of (3.4d) is proportional with the Hamiltonian, or more precisely the Hamiltonian is given
by

H = mc2

(
UiVi − ln

(
1 + GM

rc2

))
(3.4e)

where the mass m of the test body is negligible with respect to the gravitational mass M .
According to the previous discussion, it does not depend on the matrix transformation P .
Thus, P does not influence the energy of the moving body, but it influences only the angular
momentum of the moving body. The previous discussion will continue in Sect. 7.4, where
the Lagrangian will be given.

Using that

dϕ

dt
= d

dt
arctan

y

x
= vyx − vxy

r2

for any angle ϕ, from (3.4a) and (3.4b), we obtain

d

dt

(
r2 dϕ

dt

)
= d2y

dt2
x − d2x

dt2
y = GM

μr3c2
(vyx − vxy)(xvx + yvy)

(
2 + 1

β(β + 1)

)

= −r2 dϕ

dt

GM

μc2

(
2 + 1

β(β + 1)

)
d

dt

(
1

r

)
.

Two cases will be considered.

3.1 Perihelion Shift

Assume that v � c, and consider the planetary orbits. Then 2 + 1
β(β+1)

≈ 2.5 so neglecting

the expressions of order c−4 we can switch to

d

dt

(
r2 dϕ

dt

)
= −5

2

GM

c2

(
r2 dϕ

dt

)
d

dt

(
1

r

)
.

The solution of the previous equation is

r2 dϕ

dt
= C2 exp

(−5

2

GM

rc2

)
, C2 = const. (3.5)

Further, using the metric (dr)2 + r2(dϕ)2 − c2t2 = ds2 in the flat space of Minkowski,
we obtain

(
dr

dt

)2

+
(

rdϕ

dt

)2

= v2,

(
r−2 dr

dϕ

)2

+ r−2 = v2

(
r2 dϕ

dt

)−2

,

and ρ = r−1 satisfies the equation

(
dρ

dϕ

)2

+ ρ2 = v2C−2
2 exp

(
5GMρ

c2

)
. (3.6)
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We are going to find v2 from (3.4a) and (3.4b). By adding (3.4a) multiplied by 2vx =
2dx/dt and (3.4b) multiplied by 2vy = 2dy/dt and using that xvx + yvy = rdr/dt , we get

dv2

dt
= GM

μr3

[
(β−2 − 2)2(xvx + yvy) + 2

v2

c2
(xvx + yvy) · 5

2

]

= GM

μr2

dr

dt

(
−2 + 3

v2

c2

)
= 2GM

μ

dρ

dt

(
1 − 3

2

v2

c2

)
.

So, we obtain the following differential equation

(
1 − 3

2

v2

c2

)−1
dv2

dt
= 2GM

μ

dρ

dt
.

Replacing 1/μ with 1 − GMρ

c2 in the previous differential equation and after some transfor-
mations, it becomes

−2

3
c2

d ln(1 − 3
2

v2

c2 )

dt
= 2GM

d

dt

(
ρ − GMρ2

2c2
+ C

)
.

The solution by v2 is given by

v2 = 2GM

(
ρ − GMρ2

2c2
+ C

)
− 3

G2M2(ρ + C)2

c2
.

After replacing this value in (3.6) we obtain

(
dρ

dϕ

)2

+ ρ2 = A + Bρ + 6G2M2

c2C2
2

ρ2. (3.7)

Using that C2 = √
GMa(1 − ε2), where a is the semi-major axis and ε is the eccentricity,

standard calculations for the perihelion shift per orbit leads to the known result

�ϕ = 6GMπ

ac2(1 − ε2)
. (3.8)

3.2 Deflection of the Light Rays Near the Sun

Let us consider the trajectory of a light ray near the Sun. We denote by R the radius of the
Sun. In this case β → ∞, so

d

dt

(
r2 dϕ

dt

)
= −2

GM

c2

(
r2 dϕ

dt

)
d

dt

(
1

r

)

and its solution is

r2 dϕ

dt
= C2 exp

(
−2

GM

rc2

)
, C2 = const. (3.9)

Analogously to (3.6) we obtain

(
dρ

dϕ

)2

+ ρ2 = v2C−2
2 exp

(
4GMρ

c2

)
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and replacing v = c, we get

(
dρ

dϕ

)2

+ ρ2 = c2C−2
2 exp

(
4GMρ

c2

)
. (3.10)

The last step was possible because it is easy to verify that the light has a constant velocity c

in a gravitational field in orthonormal coordinates.
If r = R, then R

dϕ

dt
= c and from (3.9) we get C2 = Rc exp( 2GM

Rc2 ). By replacing this value
of C2 into (3.10) we get

(
dρ

dϕ

)2

+ ρ2 = 1

R2
exp

(
4GM

c2

(
ρ − 1

R

))
,

(
dρ

dϕ

)2

+ ρ2 = 1

R2
− 4GM

R3c2
+ 4GM

R2c2
ρ. (3.11)

From (3.11) ϕ can be determined as a function of ρ:

ϕ = arccos
ρR2c2 − 2GM

Rc2 − 2GM
, (3.12)

such that ϕ = 0 if ρ = 1
R

. It is easy to conclude from (3.12) that the angle of deflection of a
light ray near the Sun is equal to 4GM

Rc2 . In [17] is given a different proof for this angle.

3.3 Geodetic Precession and the Frame Dragging Effect

Now we will deduce the formula for geodetic precession, simplifying that the gravitational
body rests in the chosen coordinate system and hence also w = (0,0,0). We parallel trans-
port the frame Aiα from Sect. 2.3, and assume that at the initial moment it is given by
the matrix (2.20). Then we calculate the components S3jAj2 − S2jAj3, S1jAj3 − S3jAj1,
S2jAj1 − S1jAj2, where the matrix S is the same matrix given by (3.1). Straight calculation
of these components yields

S3jAj2 − S2jAj3 = 3i
ayvz − azvy

c3
, S1jAj3 − S3jAj1 = 3i

azvx − axvz

c3
,

S2jAj1 − S1jAj2 = 3i
axvy − ayvx

c3
.

So, according to (2.21) we find

d(A32 − A23)/2

ds
= 3i

ayvz − azvy

2c3
,

d(A13 − A31)/2

ds
= 3i

azvx − axvz

2c3
,

d(A21 − A12)/2

ds
= 3i

axvy − ayvx

2c3
.

(3.13)

Having the transported matrix A, the following vector 1
2 (A32 − A23,A13 − A31,

A21 − A12), represents just the 3-vector of the small space rotation. Hence for the required
angular velocity we obtain the known GR formula

� = 3

2

v × a
c2

, (3.14)
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which is confirmed to about 0.7% using Lunar laser ranging data [24, 25], and the recent
GPB experiment.

In the previous phenomena the source of gravitation was in rest, but for frame dragging
effect it is necessary to consider a moving source. In the system where the source rests the
tensor φ is well known and hence it is well known in any other system. Similar calculations
to the previous yield the same formula for frame dragging [26] as the GR formula [27].

4 Periastron Shift of the Binary Systems

Let us consider an arbitrary binary system, for example a pulsar and its companion. In
this section the periastron shift of the binary system will be calculated, assuming that both
bodies are moving in the xy-plane. Let m be the mass of a pulsar and M be the mass
of its companion, and let us choose the coordinate system such that at the initial moment
rb = (0,0,0) and rb

dt
= (0,0,0), where rb is the barycenter (2.15) of the two bodies. We

denote by (x, y,0) the coordinates of the pulsar, and by (x ′, y ′,0) the coordinates of its
companion.

Let the 4-vectors of velocity of the pulsar and its companion are given by (2.2) and (2.1)
respectively, where uz = vz = 0. It is convenient to use the notations

R =
√

(x − x ′)2 + (y − y ′)2, r =
√

x2 + y2, ρ = 1/r, r ≈ M

M + m
R.

If we make the replacements x−x′
R

= cosα and y−y′
R

= sinα, then

cosα = x

r
, sinα = y

r
, x ′/y ′ = x/y, ux ≈ −vx

m

M
, uy ≈ −vy

m

M
.

The acceleration of the pulsar (2.23), at the initial moment with the initial conditions, can
be simplified into the following form

d2x

dt2
= −

(
1 − v2

2c2

)
c2S14 − vx

c2
(axvx + ayvy) + icvyS12, (4.1a)

d2y

dt2
= −

(
1 − v2

2c2

)
c2S24 − vy

c2
(axvx + ayvy) − icvxS12, (4.1b)

where the components of the matrix S = P (U,V )T φP (U,V ) should be calculated analo-
gously to (3.1). In order to avoid large expressions for c−2 approximation, it is sufficient to
use the components (3.1), replacing vx by vx − ux and vy by vy − uy . Hence for S14, S24,
and S12 we obtain

S14 =
[
−ax

(
1

√
1 − (v−u)2

c2

− (vx − ux)
2

2c2

)

+ ay

(vx − ux)(vy − uy)

2c2
− wz(vy − uy)

]
1

c2
,

S24 =
[
−ay

(
1

√
1 − (v−u)2

c2

− (vy − uy)
2

2c2

)
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+ ax

(vx − ux)(vy − uy)

2c2
+ wz(vx − ux)

]
1

c2
,

S12 = − i

c

[
ax

c2
(vy − uy) − ay

c2
(vx − ux) + wz

]
.

According to (2.6) up to c−2, we have

1 − u2

c2

(1 − u2

c2 sin2 θ)3/2
= 1 − u2

c2

(1 − u2

c2 )3/2(1 + u2

c2 cos2 θ)3/2

= 1
√

1 − u2

c2

1

(1 + 1
c2

m2

M2 (r′ · r
r
)2)3/2

= 1
√

1 − u2

c2

1

(1 + 1
c2

m2

(M+m)2 ( dR
dt

)2)3/2
.

Using the results from Sects. 2.1 and 2.3, the components ax , ay , wz are given by

ax = −x

r

1
√

1 − u2

c2

GM

R2

(
1 − G(M + 2m)

Rc2

)
λ−3,

ay = −y

r

1
√

1 − u2

c2

GM

R2

(
1 − G(M + 2m)

Rc2

)
λ−3,

wz = Gm

R2c2

vxy − vyx

r
λ−3, λ =

√

1 + 1

c2

m2

(M + m)2

(
dR

dt

)2

.

Using the equalities between vx , ux ; vy , uy ; r , R and so on, (4.1) can be reduced to the
following form

d2r
dt2

= −R
R

GM

R2

[
1 + V 2

c2

M2 + 4Mm + 2m2

(M + m)2
− G(M + 2m)

Rc2

− 3

2c2

m2

(M + m)2

(
dR

dt

)2]
+ V

dR

dt

GM

R2

(
M

M + m
+ 3

2

)
1

c2
, (4.2)

where V is the relative velocity of the pulsar with respect to its companion.
Analogously to this acceleration, the acceleration of the body with mass M (pulsar com-

panion) at the initial moment is given by

d2r′

dt2
= R

R

Gm

R2

[
1 + V 2

c2

m2 + 4Mm + 2M2

(M + m)2
− G(2M + m)

Rc2

− 3

2c2

M2

(M + m)2

(
dR

dt

)2]
− V

dR

dt

Gm

R2

(
m

M + m
+ 3

2

)
1

c2
. (4.3)

Subtracting (4.3) from (4.2), after some transformations we get

d2R
dt2

= −R
R

G(M + m)

R2

[
1 + V 2

c2

M2 + 5Mm + m2

(M + m)2
− G(M2 + 4Mm + m2)

Rc2(M + m)

− 3

2c2

Mm

(M + m)2

(
dR

dt

)2]
+ V

dR

dt

G

R2

5M2 + 6Mm + 5m2

2(M + m)c2
. (4.4)
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All variables in (4.4) are related to the relative motion and so the assumption about the
initial moment has no role. Now, having the system of (4.4) for the relative motion of a body
with mass m with respect to the body with mass M , we can calculate the periastron shift in
two steps, analogously as it has been made for the perihelion shift in Sect. 3. The first step
consists of finding an equation analogous to (3.6) in the same way as in Sect. 3. In the second
step we sum the first equation in (4.4) multiplied by 2Vx and the second equation of (4.4)
multiplied by 2Vy . That equation can be integrated and the value of V 2 can be found. After
these two steps the periastron shift can be obtained. We present only the final results of these
two steps avoiding the long algebraic and differential calculations.

The first step from the system (4.4) yields the following equation

(
d 1

R

dϕ

)2

+ 1

R2
= V 2C−2

2

[
1 + 5M2 + 6Mm + 5m2

M + m

G

Rc2

]
. (4.5)

The second step is more complicated. Although 3
2c2

Mm

(M+m)2 ( dR
dt

)2 has no influence in (4.5),

it has a significant role in V 2, but we will see that it has no role in the periastron shift. In
order to simplify the system (4.4), one can prove that 3

2c2
Mm

(M+m)2 ( dR
dt

)2 has no influence on
the periastron shift. The proof is standard and thus we omit it.

The second step from the modified system (4.4) yields

V 2 = 2
G(M + m)

R
− 4G2

R2c2
(M2 + m2) + C

Rc2
+ K, (4.6)

where C and K are mutually dependent constants, which have no role in the periastron shift.
Now, analogously to (3.7) from (4.5) and (4.6), we get

(
d 1

R

dϕ

)2

+ 1

R2
= A + B

1

R
+ 6G2(M + m)2

C2
2c

2

1

R2
.

Using that C2
2 = G(M + m)ar(1 − ε2), similar to the calculations for the perihelion shift in

Sect. 3, for the periastron shift we obtain

�ϕ = 6πG(M + m)

ar(1 − ε2)c2
, (4.7)

where ar is the semi-major axis of the relative orbit and ε is the eccentricity of the orbit.
This result is the same as in the GR.

5 Barycenter of Two Bodies

We proceed with the problem of two bodies considering their barycenter. We shall employ
the same notations as in the previous section, and we will use the same coordinate system
with the assumptions about the initial moment. Now, we prove that in the chosen coordinate
system the barycenter coincides with the coordinate origin. According to (2.15) we have

r = −r′ M(1 + u2

2c2 − Gm

2Rc2 )

m(1 + v2

2c2 − GM

2Rc2 )
+ rb

M(1 + u2

2c2 − Gm

2Rc2 ) + m(1 + v2

2c2 − GM

2Rc2 )

m(1 + v2

2c2 − GM

2Rc2 )
.
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Since

−M(1 + u2

2c2 − Gm

2Rc2 )

m(1 + v2

2c2 − GM

2Rc2 )
= −

M(1 + V 2

2c2
m2

(M+m)2 − Gm

2Rc2 )

m(1 + V 2

2c2
M2

(M+m)2 − GM

2Rc2 )

= −M

m

(
1 − M − m

2(M + m)

V 2

c2
+ 1

2

G(M − m)

Rc2

)
,

at each moment it is satisfied

1

M
r = − 1

m
r′

(
1 − M − m

2(M + m)

V 2

c2
+ G(M − m)

2Rc2

)

+ rb

[
1

M
+ 1

m

(
1 − M − m

2(M + m)

V 2

c2
+ G(M − m)

2Rc2

)]
. (5.1)

The accelerations (4.2) and (4.3) are given with respect to the coordinate system such that
at the initial moment the coordinate center coincides with the barycenter rb and drb/dt =
(0,0,0) at the initial moment. But, if we replace r by r− rb in (4.2) and replace r′ by r′ − rb

in (4.3), then (4.2) and (4.3) will be true for each t . Further, we will use these modified
equations and will prove that at each moment

1

M

d2r
dt2

= − 1

m

d2

dt2

[
r′

(
1 − M − m

2(M + m)

V 2

c2
+ G(M − m)

2Rc2

)]
+

(
1

M
+ 1

m

)
d2rb

dt2
,

i.e.

1

M

d2r
dt2

+ 1

m

d2r′

dt2

= d2

dt2

[
R

M + m

(
− M − m

2(M + m)

V 2

c2
+ G(M − m)

2Rc2

)]
+

(
1

M
+ 1

m

)
d2rb

dt2
. (5.2)

According to the modified equations (4.2) and (4.3), the left side of (5.2) is equal to

1

M

d2r
dt2

+ 1

m

d2r′

dt2

= 1

M

[
R
R

GM

R2

V 2

c2

M2

(M + m)2
+ V

dR

dt

GM2

(M + m)R2c2

+ R
R

G2Mm

Rc2

1

R2
+ 3

2

R
R

GM

R2c2

m2

(M + m)2

(
dR

dt

)2]

− 1

m

[
R
R

Gm

R2

V 2

c2

m2

(M + m)2
+ V

dR

dt

Gm2

(M + m)R2c2

+ R
R

G2Mm

Rc2

1

R2
+ 3

2

R
R

Gm

R2c2

M2

(M + m)2

(
dR

dt

)2]
+

(
1

M
+ 1

m

)
d2rb

dt2

= R
R

G

R2

V 2

c2

M − m

M + m
+ V

dR

dt

G

R2c2

M − m

M + m
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− R
R

G2(M − m)

Rc2

1

R2
− 3

2

R
R

G

R2c2

M − m

M + m

(
dR

dt

)2

+
(

1

M
+ 1

m

)
d2rb

dt2
.

Hence, it is sufficient to prove that

d2

dt2

[
R

M + m

(
− M − m

2(M + m)

V 2

c2
+ G(M − m)

2Rc2

)]

= R
R

G

R2

V 2

c2

M − m

M + m
+ V

dR

dt

G

R2c2

M − m

M + m

− R
R

G2(M − m)

Rc2

1

R2
− 3

2

R
R

G

R2c2

M − m

M + m

(
dR

dt

)2

.

After multiplication with 2c2

G
M+m
M−m

, we should prove that

d2

dt2

R
R

− 1

G(M + m)

d2

dt2
(R(V · V))

= 2
R
R

1

R2
V 2 + 2V

dR

dt

1

R2
− 2

R
R

(M + m)G

R3
− 3

R
R3

(
dR

dt

)2

. (5.3)

Using the identities

d2

dt2

R
R

= −2V
dR

dt

1

R2
− R

R3
V 2 + 3

R
R3

(
dR

dt

)2

and
dR

dt
= V · R

R
,

the identity (5.3) is equivalent to

− 1

G(M + m)

d2

dt2
(R(V · V))

= 3
R
R3

V 2 + 4V
dR

dt

1

R2
− 6

R
R3

(
dR

dt

)2

− 2
R
R

(M + m)G

R3
. (5.4)

A straight calculation and using the identity V 2 = 2G(M+m)

R
+ const. one verifies the iden-

tity (5.4), i.e. (5.2).
From (5.1) and (5.2) it follows that

(
1

M
+ 1

m

)
d2rb

dt2
= d2

dt2

[
rb

(
1

M
+ 1

m

(
1 − M − m

2(M + m)

V 2

c2
+ G(M − m)

2Rc2

))]
,

i.e.

d2

dt2

[
rb

(
G(M + m)

R
− V 2

)]
= 0. (5.5)

Hence it follows

rb

(
G(M + m)

R
− V 2

)
= A + Bt,

where A and B are constants, assuming that the initial moment is t = 0. Since rb = (0,0,0)

for t = 0 by assumption, we obtain A = 0. By assumption we also have drb/dt = (0,0,0)
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for t = 0, and hence B = 0. Thus, rb ≡ (0,0,0), if we assume that rb = (0,0,0) and
drb/dt = (0,0,0) at the initial moment. As a consequence, the formulae (4.2) and (4.3)
are true not only at the initial moment, but along the whole trajectory.

6 Equations of Motion for n-Body Problem and Their Relationship with the GR
Equations

Now, we will consider the n-body problem, i.e. the equations of motion of n bodies with
arbitrary masses. Assume that all bodies are compressed into points, and hence we neglect
their angular momenta. We will obtain the equations of motion in explicit form using 3-
vectors of distances between the bodies, and their velocities and accelerations.

Let a system of n bodies with masses m1, m2, . . . ,mn, with initial positions and initial
velocities be given. We denote by rk and vk the 3-radius vector and 3-vector of velocity of
the body with mass mk , and denote rij = |ri − rj | for i �= j . We will write the equations
only for the motion of the j -th body under the gravitation of the i-th body and then follows
summation for all i �= j .

Analogously as in Sect. 4, the components of the matrix S are

S14 =
[
−ax

(
1 + (vy − uy)

2

2c2
+ (vz − uz)

2

2c2

)
+ ay

(vx − ux)(vy − uy)

2c2

+ az

(vx − ux)(vz − uz)

2c2
+ wy(vz − uz) − wz(vy − uy)

]
1

c2
,

S24 =
[
ax

(vx − ux)(vy − uy)

2c2
− ay

(
1 + (vx − ux)

2

2c2
+ (vz − uz)

2

2c2

)

+ az

(vy − uy)(vz − uz)

2c2
+ wz(vx − ux) − wx(vz − uz)

]
1

c2
,

S34 =
[
ax

(vx − ux)(vz − uz)

2c2
+ ay

(vy − uy)(vz − uz)

2c2

− az

(
1 + (vx − ux)

2

2c2
+ (vy − uy)

2

2c2

)
+ wx(vy − uy) − wy(vx − ux)

]
1

c2
,

S12 = − i

c

[
ax

c2
(vy − uy) − ay

c2
(vx − ux) + wz

]
,

S23 = − i

c

[
ay

c2
(vz − uz) − az

c2
(vy − uy) + wx

]
,

S31 = − i

c

[
az

c2
(vx − ux) − ax

c2
(vz − uz) + wy

]
,

where (vx, vy, vz) = vj and (ux, uy, uz) = vi . Notice that the orthogonal matrix P

from (2.18) besides the Lorentz transformation of velocity u − v contains also a space
rotation determined by the 3-vector (u × v)/c2. This small space rotation will be taken into
account by changing the components of the tensor φ, i.e. of ax, ay, az, while the influence on
wx,wy,wz is of order c−4. The previous equations can be written in the following compact
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form

S =
[

a
(

1 + (vj − vi )
2

2c2

)
− vj − vi

2c2
(a · (vj − vi )) + (vj − vi ) × w

]
1

c2
,

S∗ = − i

c3
[a × (vj − vi )] − i

c
w,

(6.1)

where S = (S41, S42, S43) and S∗ = (S23, S31, S12).
Further, the components of the tensor φ caused by the body with mass mi are given by

ax = −(x − x ′)
Gmi

R3λ3μ

(
1 + u2

2c2

)
− Gmi

r3
ij c

2

[
(rj − ri ) × ((rj − ri ) × v̇i )

]

x

− (y − y ′)
vxuy − vyux

c2

Gmi

R3
+ (z − z′)

vzux − vxuz

c2

Gmi

R3
,

ay = −(y − y ′)
Gmi

R3λ3μ

(
1 + u2

2c2

)
− Gmi

r3
ij c

2

[
(rj − ri ) × ((rj − ri ) × v̇i )

]

y

− (z − z′)
vyuz − vzuy

c2

Gmi

R3
+ (x − x ′)

vxuy − vyux

c2

Gmi

R3
,

az = −(z − z′)
Gmi

R3λ3μ

(
1 + u2

2c2

)
− Gmi

r3
ij c

2

[
(rj − ri ) × ((rj − ri ) × v̇i )

]

z

− (x − x ′)
vzux − vxuz

c2

Gmi

R3
+ (y − y ′)

vyuz − vzuy

c2

Gmi

R3
,

wx = Gmi

c2R3
[(y − y ′)uz − uy(z − z′)],

wy = Gmi

c2R3
[(z − z′)ux − uz(x − x ′)], wz = Gmi

c2R3
[(x − x ′)uy − ux(y − y ′)],

where (x, y, z) = rj , (x ′, y ′, z′) = ri , R = rij , λ = 1 + 1
2c2 (u · rj −ri

rij
)2,

μ =
(

1 + Gmi

rij c2

)(
1 + 2Gmj

rij c2

) ∏

k �=i,j

[(
1 + Gmk

rkic2

)(
1 + Gmk

rkj c2

)]
.

The last two terms in ax , ay , and az are added as influence from the space rotation given by
the vector (u × v)/c2. These equalities in vector form can be written as

a = − (rj − ri )Gmi

r3
ij

[
1 − 3

2

[vi · (rj − ri )]2

r2
ij c

2

− G(mi + 2mj)

rij c2
−

∑

k �=i,j

(
Gmk

rkic2
+ Gmk

rkj c2

)
+ v2

i

2c2

]

− Gmi

r3
ij c

2
(rj − ri ) × ((rj − ri ) × v̇i ) − Gmi

r3
ij c

2
(rj − ri ) × (vj × vi ). (6.2)
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For the equations of motion of the j -th body, analogously to (4.1) we obtain

d2x

dt2
= −

(
1 − v2

2c2

)
(S41v

2
x + S42vxvy + S43vxvz)

+ ic

(
1 − v2

2c2

)
(S12vy + S13vz + icS14),

d2y

dt2
= −

(
1 − v2

2c2

)
(S41vxvy + S42v

2
y + S43vyvz)

+ ic

(
1 − v2

2c2

)
(S21vx + S23vz + icS24),

d2z

dt2
= −

(
1 − v2

2c2

)
(S41vxvz + S42vyvz + S43v

2
z )

+ ic

(
1 − v2

2c2

)
(S31vx + S32vy + icS34).

In vector form they can be written as

d2rj

dt2
= −vj (S · v)

(
1 − v2

2c2

)
+ S

(
1 − v2

2c2

)
c2 + ic

(
1 − v2

2c2

)
(v × S∗). (6.3)

Finally, after summation for all i �= j and after many transformations, (6.3) become

d2rj

dt2
=

∑

i �=j

{
− (rj − ri )Gmi

r3
ij

[
1 − 3

2

[vi · (rj − ri )]2

r2
ij c

2

− G(mi + 2mj)

rij c2
−

∑

k �=i,j

(
Gmk

rkic2
+ Gmk

rkj c2

)
+ v2

i

c2
− 2

vi · vj

c2
+ (vi − vj )

2

c2

]

− Gmi

r3
ij c

2
(rj − ri ) × ((rj − ri ) × v̇i ) + 3

2

Gmi

r3
ij c

2
(vj − vi )[(rj − ri ) · (vj − vi )]

+ Gmi

r3
ij c

2
(vj − vi )[(rj − ri ) · vj ]

}
. (6.4)

Now, let us distinguish the terms in (6.4) which are Lorentz invariant. From (6.4) we
obtain

d2rj

dt2
=

∑

i �=j

{
− (rj − ri )Gmi

r3
ij

[
1 − 3

2

[vi · (rj − ri )]2

r2
ij c

2
+ v2

i

c2
− 2

vi · vj

c2

]

+ Gmi

r3
ij c

2
(vj − vi )[(rj − ri ) · vj ]

}
+ Lorentz invariant terms. (6.5)

Notice that the Einstein-Infeld-Hoffmann (EIH) equations [15] can also be written in
the same form (6.5), and hence the conclusion that (6.4) differ from the Einstein-Infeld-
Hoffmann equations by Lorentz invariant terms of order c−2. The different nature of the
coordinate systems for (6.4) and (6.5) does not permit them to be identical.
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Now let us consider a special case of two bodies. From (6.4) we can determine the relative
orbit and then we can compare it with the corresponding GR relative orbit via EIH equations.
It is interesting that assuming the change of time dt̄ = (1 + 3

2
G(M+m)

Rc2 )dt , the relative orbit
from (6.4) maps into the relative orbit according to the GR. Since the reparameterization
of the trajectories by the time does not change the “space trajectories”, now we generalize
the results about the periastron shift, because now the coordinate system may not rest at the
barycenter of the two bodies and they may not move in a single plane.

7 Some Remarks and Conclusions

Using orthonormal frames enables a deep study on the effects where angles and precessions
are measured and the results regarding the barycenter of two bodies are the same as in GR.
However, not everything was considered and we complete it now.

7.1 The Analog of the PPN Parameter γ

In the GR, the non-zero PPN parameters γ and β are both equal to 1. So, it is natural to
ask what is their meaning in this approach. The formulae for the deflection of the light rays,
geodetic precession and the frame dragging effect lead to the following conclusion: The
same formulae which are obtained for γ = 1 in GR, here are obtained via the equations of
motion (2.23). But, if we omit the matrix P (and P T also) in (2.23), then we obtain formulae
which are identical for γ = 0 in the PPN approach, for example in deflection of the light
rays near the Sun, geodetic precession and the frame dragging. Hence, the appearance of
the matrix P in (2.23) corresponds to γ = 1. The previous statement about γ = 0 and γ = 1
can be verified directly from the equations of motion. The Lorentz force shows that for the
acceleration of a charged particle one should know only the tensor of electromagnetic field,
which is analogous to φij , and it is not necessary to know the velocity of the source and the
tensor P has no role there. Thus, we can intuitively say that γ = 0 in the electrodynamics.
Now we clearly see the similarity and the differences between the electrodynamics and
gravitation. Notice that the Larmour’s theorem suggests connection between magnetic field
and the angular velocity, hence simultaneously with the electromagnetic tensor it is natural
to introduce and to consider the tensor φ.

The Coriolis force f = 2mv × w is obtained in (3.2) where the tensor P has the essential
role. By omitting the matrix P in (2.23), the result would be f = mv × w. Thus, we can
write f = (1 + γ )mv × w. The previous discussion and also the Larmour’s theorem are the
reason why in many formulae comparing the angular velocity with the magnetic field, the
coefficient 2 appears.

7.2 Gravitational Radiation

Further, let us discuss the gravitational radiation. The intensity of the quadrupole electro-
magnetic radiation is given by [19]

I = 1

180c5

(
d3Dαβ

dt3

)2

. (7.1)

Having in mind that the intensity of the electromagnetic radiation is proportional to H 2 and,
H ∼ 1

2 w, we see that in case of gravitation the corresponding intensity should be 22 = 4
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times larger (assuming a system of units where G = 1), i.e., it should be

I = G

45c5

(
d3Dαβ

dt3

)2

. (7.2)

This formula (7.2) is well known for the gravitational radiation [19] according to the GR.
Moreover, it is known [19] that if the charges of the particles in one system are proportional
to the corresponding masses of the particles, then there will not exist a dipole electromag-
netic radiation. In case of gravitation, this means that there will not exist dipole gravitational
radiation in case of two bodies.

7.3 The Analog of the PPN Parameter β

Analogously to the PPN parameter β , in flat Minkowski space we determine a parameter β∗
via the expansion of the coefficient μ:

μ = 1 + GM

rc2
+ β∗

(
GM

rc2

)2

+ · · · . (7.3)

Now one can calculate that the perihelion shift is given by

�ϕ = (6γ + 2β∗)
GMπ

ac2(1 − ε2)
, (7.4)

and since β∗ = 0, the total perihelion shift is a consequence of appearance of the tensor P .
Comparing this formula with the corresponding PPN formula, we see that the PPN parame-
ter β corresponds to 2 − γ + β∗, which shows that the tensor P has influence not only on
g11, g22, and g33, but also to g44.

7.4 Lagrangian

In Sect. 3 the energy of a particle which moves in a gravitational field was derived, and it
was given by the Lorentz invariant form (3.4d). Assume that we have a source of gravitation
at the coordinate center, which rests with respect to the chosen coordinate system. Then the
Lagrangian is given by

L = −mc2

√

1 − v2

c2
+ mc2 ln

(
1 + GM

rc2

)
.

Indeed, a direct calculation shows that the Hamiltonian function is given by

H = v
∂L

∂v
− L = mc2

√
1 − v2

c2

− mc2 ln

(
1 + GM

rc2

)

and it is a constant according to (3.4c). Further the Euler-Lagrange equations can be written
in the following equations

dVi

ds
= φijVj , (7.5)

for i = 1,2,3. Compared with (2.23) we notice that if we dismiss the tensor P and also P T ,
we obtain (7.5). On the other side, we mentioned in Sect. 3, that (7.5) lead to the same
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Hamiltonian function. Indeed, the appearance of the tensor P means presence of a force,
which does not do action, i.e. preserves the energy of the test body in the gravitational field.
Finally, notice that analogously to (3.4d), the Lagrangian can be written in the following
Lorentz invariant form

L = − mc2

UiVi

+ mc2 ln

(
1 + GM

rc2

)
, (7.6)

where Ui is the 4-vector of velocity of the gravitational body, Vi is the 4-vector of velocity
of the test body with negligible mass m and the distance r is determined in the system where
the gravitational body rests.

7.5 The Field Equations

According to the discussion in Sect. 2.2, the gravitational potential in case of many distinct
bodes with point masses is given by

μ =
∏

i

(
1 + Gmi

ric2

)
(7.7)

where the distance ri between the considered test body and the i-th gravitational body is
determined in the system where the i-th gravitational body rests. The scalar μ can be inter-
preted as a scalar which is related to the gravitational redshift caused by many bodies.

In case of a mass distribution given by the mater density ρ, the potential μ is given by

lnμ =
∫

V ′
ln

(
1 + Gρ(r′)

|r − r′|c2
dV ′

)
, (7.8)

where the distance |r − r′| is defined analogous as in (7.7). Notice that it is wrong if we
write (7.8) in the form

lnμ =
∫

V ′

Gρ(r′)
|r − r′|c2

dV ′, (7.8′)

because ρ is closer to Dirac function, where
∫

ρdV ′ = M , than to a bound function. Indeed,
assuming that ρ is bound function and then (7.8′) is true, using that

∫
ρdV ′ = M in case of

one body, we would obtain lnμ = GM

rc2 and hence μ = exp(GM

rc2 ), which is a wrong result.
Now the density ρ satisfies the following partial differential equations

∂φij

∂xk

+ ∂φjk

∂xi

+ ∂φki

∂xj

= 0 (7.9)

and

∂φij

∂xj

= 4πGρ

c2
Ui (7.10)

where Ui is the field of 4-vector of velocity of the mater distribution. They are the field equa-
tions and they are completely analogous to the Maxwell’s equations for electrodynamics. If
we put i = 4 and u ≈ 0 in (7.10), we just obtain the Poisson’s equation.
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7.6 Short Discussion About the Einstein-Infeld-Hoffmann Equations

At the end we try to explain why EIH equations correspond to the case 4 in Sect. 1. There
are two main reasons: (i) While there is no privileged metric in any metric gravitational
theory for determining any (invariant) scalar, for example curvature scalar, for calculating
some noninvariant scalars we really need a privileged system. For example, we apply the
equations of motion from any metric theory to find many scalars (like perihelion shift per
orbit) assuming a priori that the corresponding equations are related to a flat manifold, but
not curved. These calculations may lead to satisfactory results, which really happens, only
in an inertial system, i.e. far from the gravitational fields. (ii) The fact that (6.4) differ from
the EIH equations for Lorentz invariant terms also suggests that both equations are given
with respect to an observer far from gravitation. The equations of motion according to an
observer inside the gravitational field are much more complicated.
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